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UNIT I: 

BASIC FORMALISM 

                  Interpretation of the wave function – Time dependent Schrodinger equation – Time  

independent Schrodinger equation – Stationary states – Ehrenfest’s theorem  -Linear vector 

space – Linear operator – Eigen functions and Eigen Values  - Hermitian Operator – Postulates 

of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty 

relation 

1.1 Introduction: 

              Two or more waves can traverse the same space independently of one another.  Hence 

the total displacement at any point due to number of waves is simply the vector sum of the 

displacement produced by the individual waves.   

                This is known as the principle of superposition. The concept of superposition of states 

allows the construction of wave pockets. 

Wave packet: 

              When  the momentum of a particle is well defined, the wave can be of infinite extent.  

Therefore, a free particle moving along x-axis with a well defined momentum is described by an 

infinite plane wave  

                        (x,t) = A0 exp( i (kx -  t))                     ----------------(1) 

Where, the wave vector  

                                                                K = 
  

 
 

And   is the angular frequency. 

                            In the case of electromagnetic field varies in space and time.  Sound waves can 

be described by the pressure variation in space and time. 

                             In other words, to describe wave motion, one requires a quantity which varies 

in space and time.  In analogy with these, to describe matter waves associated with particles in 

motion, one requires a quantity which varies in space and time.  This variable quantities is called 

the wave function,  (x,t), must be large in regions where the particle in likely to be found and 

small in the region where it is less likely to be found.  
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                            That is, the wave function of a particle in conformity with the uncertainty 

principle must be localized in a small region around it.  The wave function of the matter wave 

which is confined to a small region of space as figure 1 is termed as a wave pocket or wave 

group. 

 

Figure 1 representation of wave packet 

                        Mathematically,  a wave packet can be constructed by the superposition of an 

infinite number of plane waves with slightly differing k value. 

                            =      
 

  
exp[ikx – i (k)t] dk                          ---------------(2) 

 As the particle is localized, we are interested in the superposition which leads to a wave 

group which travels without change of shape.  This is possible when A(k) is zero everywhere 

except for the small range of k value 

               (k0 - 
  

 
) < k< (k0 + 

  

 
) ,     where      k0                    -----------------  (3) 

                                   (k) as a power series in (k - k0) about k0 

                   (k) =  (k0)  +  (k - k0) (
  

  
)k = k0  +……                    --------------------  (4) 

Neglecting higher order terms and writing 

                                            (k0)  =  0  ,  (
  

  
)k = k0  = 

  

  
 

We have 

                 =      
 

  
exp[ikx – i  0t + i(k - k0) (

  

  
  t ] dk                   -------------(5) 

Adding and subtracting i k0x to the exponential, 
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       =F(x,t) exp[i (k0x -  0t )]                              -------------   -(6) 

Where 

F(x,t) =      
 

  
exp[i(k-k0)( x – 

  

   
t ] dk                               -----------(7) 

 The group velocity      vg =      
  

   
           

 The wave packet move with the group velocity vg , the individual waves of the packet 

travels with the velocity vp called phase velocity or wave velocity. 

 It can easily to proved that the group velocity of the wave packet vg is the same as the 

velocity of the material particle.  Consider the relation, 

E =     and p =    

The group velocity  

                                   vg =      
  

   
      =        

  

  
                                                  ----------  (8) 

for a free non relativistic particle 

                                                   E =      
  

   
 

                                                 dE = 
 

 
 = v                                                       ------------  (9) 

for a relativistic particle, 

   =         
    

Therefore, 

                                    
  

  
    =  

   

 
      =      

              
  

  

              
  

  

         =  v         ------------- -(10) 

 Thus, the velocity of a particle and the group velocity of the corresponding wave packet 

are the same.  The phase velocity 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

 

                                                                                  7                                                Quantum Mechanics - I 
 

                                  vp =    
 

  
    =      

 

 
    =      

   

  
  =  

  

 
                  -------------------(11) 

 It has no physical significance and is not a measurable quantity. 

1.2 Time Dependent Schrodinger Equation 

 The wavelength l of the de-Broglie wave associated with a free particle of 

mass m moving along the x-axis with momentum px is given by, 

  = 
 

  
                                                -------------------(12) 

The wave-vector k is related to the wavelength as, 

K = 
  

 
                                                      --------------(13) 

From the above two equations, we get 

   = 
 

 
 = 

  

  
  =                                        --------------(14) 

  The kinetic energy E of the particle is related to the angular frequency   of the wave associated 

with it as,  

E =                                                    -------------------(15) 

Further, we have, 

E = 
   

  
                                                  -----------------------(16) 

So that Equations (14), (15) and (16) yield, 

  = 
 

 
 =  

   

   
  =  

    

   
  =  

   

  
                                -------------------(17) 

 The wave function        which describes the free particle localized in the region of the x-axis 

is given by, 

       =      
 

  
exp[ikx – i (k)t] dk                                 -----------(18) 

Using given by Equation (17), the above becomes                                           

                                        =      
 

  
exp[i(kx – 

   

  
t] dk                           -----------(19) 
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     Differentiating Equation (19) with respect to time t, we get 

                              
         

  
  = 

  

  
    A(k) exp [i (k x – 

   

  
t] dk                                                    

Further, differentiation of Equation (18) with respect to x gives 

                                   
         

  
 = i     

 

  
exp[i(kx – 

   

  
t] dk                  ------------(20) 

Multiplying Equation (19) by i   we obtain 

                     i   
         

  
 = 

  

  
        
 

  
exp[i(kx – 

   

  
t] dk                  ------------ (21) 

In view of Equations (20) and (21) we obtain 

                                         i   
         

  
 = - 

  

  
 
          

   
                                   ------------ (22) 

Equation (22) is the one-dimensional time-dependent Schrödinger equation for a particle 

of mass m localized in the region of the x-axis and described by the wavefunction       . 

Equation (22) can be extended to three dimensions in a straightforward manner. In three 

dimensions the wave function that describes the state of the particle is a function of position    in 

space and time t.  

         =        exp[i k.     – 
   

  
t] dkx dky dkz  

             =       exp[i(kx.x+ky.y+kz.z)  – 
   

  
t] dkx dky dkz       ----(23) 

Differentiating Equation (23) with respect to t we obtain       

                
          

  
    =   -    

  

  
             exp[i(kx.x+ky.y+kz.z)  – 

    
    

    
   

  
t] dkx dky dkz                      

The above gives, 

      i     
          

  
    =   i        exp[i(kx.x+ky.y+kz.z)  – 

    
    

    
   

  
t] dkx dky dkz        ---(24) 

Differentiating Equation (23) with respect to x we get,        

          
          

  
    =        i        exp[i(kx.x+ky.y+kz.z)  – 

    
    

    
   

  
t] dkx dky dkz                                             
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 The above gives on differentiating with respect to x, 

           

   
  = -    

      exp[i(kx.x+ky.y+kz.z)  – 
    

    
    

   

  
t] dkx dky dkz               -------(25)    

We similarly obtain 

 
           

   
  = -    

      exp[i(kx.x+ky.y+kz.z)  – 
    

    
    

   

  
t] dkx dky dkz              -------(26)    

 
           

   
  = -    

      exp[i(kx.x+ky.y+kz.z)  – 
    

    
    

   

  
t] dkx dky dkz              -------(27)    

Adding Equations (25), (26) and (27), we get, 

          

   
   =         exp[i(kx.x+ky.y+kz.z)  – 

    
    

    
   

  
t] dkx dky dkz              -------(28) 

Equations (24) and (28) give,  

                                          i     
          

  
    = - 

  

  
                                        --------------(29) 

Equation (29) is the three-dimensional time-dependent Schrödinger equation for a free 

particle described by the wave function        . Equations (29) and (22) give the causal 

development or the time evolution of the wave functions describing the states of one-dimensional 

and three-dimensional motions of a free particle, respectively, undisturbed by any measurement. 

1.3 Stationary state 

 The time-dependent states of a quantum system are the solutions of the general time-

dependent Schrödinger equation, 

i     
          

  
    = -  

  

  
                                

                        =                                                --------------(30) 

 The operator    being the Hamiltonian for the system. The solution of the above equation 

when    is explicitly dependent on time is generally a difficult task and is treated most commonly 

by approximate methods.  

For the moment, it will suffice to consider conservative systems, that is, systems for 

which    does not depend explicitly on time. If such is the case, the above equation becomes, 
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                   i     
          

  
    =    

  

  
                                       ------------ (31) 

Since the operator (i     
 

  
)  on the left is independent of coordinates while the operator 

  
  

  
             on the right is independent of time, it is reasonable to use, as a trial solution of 

Equation (31), one in the separated form: 

                                             =         T(t)                             ---------------- (32) 

Substituting Equation (30) in Equation (31) we get,  

        i     
     

  
    =      

  

  
                              

Dividing throughout by       T (t), we get              

               
 

    
       

     

  
 = 

 

      
   

  

  
                                              -------- (33) 

 The left hand side of the above equation is a function of only time while the right hand 

side is a function of only coordinates. Hence for the above equation to hold, each side must be 

equal to some constant. Taking this constant as equal to E we obtain, 

(a)  
 

    
       

     

  
 =  E                or             

                                                                 
     

  
  =  T(t)E                           -----(34) 

(b)  
 

      
   

  

  
                           =  E                          or 

                                  
  

  
                     =  E                                  ----------(35) 

Solution of  Equation  (34) is given by, 

                                                T(t) = exp(-
 

 
   )                                   ----------------(36) 

Therefore, equation (32) 
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                                                              =            
 

 
               

Equation (34) can be written as, 

                                                                    = E                                  ----------------- (37) 

Where,       

                                            =    
  

  
           =     /2m +                  ------------(38) 

              -  Operator corresponding to kinetic energy + operator corresponding to potential 

energy. or   Operator corresponding to the total energy of the system. 

 Equation  (37) is the energy eigen value equation and the constant is thus identified as the 

energy eigen value. In general, Equation (37) has a complete set of solutions   (   ) such that, 

      (   ) = En   (   )          --------------------   (39) 

 En represent the possible results of energy measurement performed on the system. 

Including the time-dependent part, we have the wave function of the system, 

                                          (   ,t) =   (   )      
 

 
                  -----------  -(40) 

 Equation (40) gives the time-dependent states of the system. 

The probability density, i.e., the probability of finding the particle, with energy eigen 

value  En within unit volume about the position     at the instant t is given by, 

  (   ,t) =         2 
                                                        

            =   
 
 (         

 

 
       

 
 (         

 

 
     

             =         
2 
                                                 ----------- -(41) 

We find that      

                                        (   ,t)  = constant time                             ------------- (42) 

 The states described by wave function such as   (r,t)  given by Equation (40) for which 

the probability density is constant in time are called stationary or steady states of the system. 

 Let us now consider an observable A for the system whose operator    does not depend on 

time explicitly. By definition, the expectation value of A in the stationary state described by the 

wave function   (   ,t) is given by,        
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                                           =           
                         

 

  
 d

3
(  )       

                                         =         
              

 

 
                    

 

 
     

 

  
 d

3
(  )      

                                =         
                   

 

  
 d

3
(  )     = constant in time             -----------(43) 

 We find that the expectation value of an observable, which is not an explicit function of 

time, in any stationary state is constant in time. We know that the equation of continuity for 

probability is given by 

                                    
         

  
 +                  =  0                                  ------------(44) 

 For stationary states, probability density          is independent of time so that 
         

  
 = 0. 

Clearly, for stationary states, the current density         , according to Equation (44), satisfies 

                 =  0             

Div                =  0                              -------------- (45) 

1.4 Time Independent Schrodinger equation             

      Consider a particle of mans m moving freely in space. Let          or y(x, y, z, t) 

 B e the wave function for the de-Broglie wave associated with the particle at the location or      

(x, y, z) at the instant of time t.  

In analogy with classical mechanics, the differential equation for the wavefunction can be 

written as,            

  
            

   
  + 

            

   
    +   

            

   
     = 

 

  
  
            

   
 

where u in the wave velocity of the de-Broglie wave. The above equation can also be written as, 

                                             
            

   
   = 

 

  
  
            

   
 

                                                           = 
 

  
  
         

   
                          -----------(46) 

The solution of Equation (46) in its most general form is given by, 

        =       exp(-i                              ---------------(47) 

  = 2                                                -------------(48) 
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   being the frequency of the wave and       is a time-independent function and 

represents the amplitude of the wave at the location    .  

We get from Equation (47) an differentiation with respect to time t, 

                                                       
          

  
  = -i                   

Differentiating the above equation with respect to time t we get, 

                                   
           

   
  = -                                              --------------(49) 

Using Equation (49) in Equation (46) we get, 

                                                          = - 
  

  
                                           ------------(50) 

We have,  

                                                       = 2    = 2 
 

 
                                       -------------(51) 

 Where is the wavelength of the de-Broglie wave. Equation (51) gives, 

                                                                  
 

 
   =    

  

 
                                      ---------(52) 

Use of Equation (52) in Equation  (50) gives,                                                                            

                                                    =  -   
   

  
                 

                                                   +  
   

  
                   =  0 

                                                   +  
   

  
                           =  0 

                                                          +  
   

  
             =   0                           -------------(53) 

It v the velocity of the particle, we have, 


 

  


Substituting the above in Equation (53) we obtain, 

          +  
       

  
             =   0 
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                                                   +  
    

  
             =   0                      --------------(54) 

 If E be the total energy of the particle and V be its potential energy then we have the 

kinetic energy of the particle, 

 

 
  m    =  E-  V 

So that 

                                                           = 2m (E - V)                      --------------(55) 

Substituting Equation (55) in Equation (54) we obtain, 

                                                   +  
  

  
   (E - V)          =   0                 ---------------(56) 

 Equation (56) is the time-independent Schrödinger equation for a particle of mass m, total 

energy E moving in a force field described by the potential energy function V.                                     

     For a freely moving particle in space, V = 0, so that Equation (56) reduces to, 

                                           +  
  

  
   E           =   0                         -------------(57) 

For one-dimensional motion localized in the region along the x-axis, Equation (56) gives  

                              
        

   
   +    

  

  
   E           =   0                        --------(58)      

                                            

                             

1.5 Interpretation of the wave function           

Probability interpretation 

  The wave function        has no physical existence since it can be complex.  Also, it 

cannot be taken as a direct measure of the probability at       since the probability is real and 

nonnegative.  However,        must in some way be an index of the presence of the particle at 

        A universally accepted statistical interpretation was suggested by Born in 1926.  He 

interpreted the product of         and its complex conjugate    as the position probability 

density        

                                      =    (r,t)         =          2 
              ----------------(59) 
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 The quantity         2 
d   is then the probability of finding the system at time t in the 

small volume element d   surrounding the point r. 

 Where         2 
d   is   integrated over the entire space one should get the total 

probability, which is unity.  Therefore, 

                                             
 

  
       =   1                     --------------------(60) 

 The above equation to be define            must tend to zero sufficiently rapidly as r   

    Hence, one can multiply         by a constat N, so that N   satisfies the condition in 

equation(60) 

                                2                  
 

  
       =   1                -----------------(61) 

 The constant N  is called the normalization constant and above equation is called 

normalization condition.    

Probability Current density 

 The probability of finding a system, described by a wave function               in the 

finite volume V in space is given by           and this changes as the wave function evolves 

time. 

 Consider the Schrodinger equation and its complex conjugate form, 

                                          
       

  
 = [ 

   

  
           ]                  --------------(62) 

                                             
   

  
 = [ 

   

  
           ]  *                         --------------(63) 

   Here, the potential V is assumed to be real.  Multiplying equation (62) by  * and equation (63) 

by   from left and subtracting one from other 

      
  

  
  

    

  
   =  

   

  
                    ] 

                                   
      

  
  = 

  

  
                      ]                          -----------------(64) 
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Integrating, we get 

 

  
     
 

  
  = 

  

  
                        
 

  
 ]            

                    =    
  

  
      [                     

        ---------------- (65) 

           and       0 and             the right - hand side of equation (65) vanishes.  Then, 

 

  
     
 

  
   =  0 

                                      
 

  
      =  constant in time.                         -------------------(66) 

   That is normalization integral is constant in time. 

    By defining a vector j(r,t) called the probability current density. 

                             j(r,t) =  
  

  
                  )             -------------- (67) 

substitute in equation (17)  we get 

                                         
       

  
  +   .j(r,t)  =  0                                    --------------------(68) 

     The above equation is the equation of continuity for probability, which is analogous to the 

equation of continuity in hydrodynamics and electrodynamics. 

     Writing the integral form of equation (68) over a finite volume V and using Gauss theorem, 

we get 

                             
 

  
             =             =  -                          -------------(69) 

       Where s is the area of the enclosed volume V.  this result, suggests that any decrease in 

probability in a region is accompanied by an outflow of probability across its surface. 
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Expectation Value 

           The definition of probability density immediately allows the calculation of the expectation 

value of the position vector of a particle.  Consider a large number of measurements of the 

position vector r of  a particle made when it is in a particular state.  Ensure that the particle has 

the same wave function        before each measurement.  The average of all the different values 

is the ‘expectation vale’      of the position coordinate.  As         2 
 represents the  probability 

with which the value r occurs in the measurement,     can be written as 

                             =         
       =       

                                    -------------(70) 

The expectation value of a function r may be written as 

                               =                                                     ----------------(71) 

Left multiplying the time dependent - Schrödinger equation   by     and integrating from -

      , we get 

                         
 

  
 

 

  
  d    =             

  

  
   

 

  
   d    +      

            

    Or 

                                              
 

  
     =       

  

  
    +                        ------------- (72) 

                                                        =  
  

  
   +                                ------------ (73)         

If the wave function is not normalized,                     

                                                                  = 
          

     
      

                                    ---------(74) 

                   Since the space coordinates have been integrated out, the expectation value is a 

function of time only. 
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1.6 Ehrenfest’s theorem 

 P. Ehrenfest in 1927 stated, in regard to the correspondence between the motion of a 

classical particle and the motion of a wave packet representing the particle, the following 

theorem. 

The averages or the expectation values of the quantum mechanical variables satisfy the 

same equations of motion as the corresponding classical variables in the corresponding classical 

description. Specifically the theorem states that, 

 

  
       = 

 

 
      

 

            
 

   
       =    

     

  
  

 provided that the wavefunction (x, t) with respect to which averages are computed 

satisfies the time-dependent Schrödinger equation 

   
       

  
 = [ 

  

  
 
  

   
     ]  (x,t) 

   
       

  
  =     (x,t) 

 

1.7 Eigen functions and Eigen vectors 

 A particular class of operators is of primary interest in the mathematical formulation of 

quantum theory. These are the so-called linear operators. 

Consider an operator Â defined in a certain domain of definition. Let   1 and  2 be any 

two arbitrary functions defined in the domain of definition of Â. 

If on operating on the sum of the functions  1 and   2 the operator Â yields the same 

result as the sum of the operations on the two functions separately, then Â is said to be linear 

operator. Thus, for the operator Â to be linear we must have, 

 

                                         Â (  1 +   2) = Â   1 + Â   2                        ----------------(1) 

For linear of Â we must also have 
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Â(c  1)  =  c    1 

Â(c  2)  =  c    2                                       -------------(2) 

 Where c is a number. 

The properties of linear operator expressed by the Equations (1) and (2) will be useful in 

later developments of quantum mechanics. 

1.8 Eigen functions and Eigen values of a Linear operator 

 Consider a linear operator Â defined in a certain domain of definition. If   is any 

function defined in the domain of the definition of Â, then in general, we have, 

                Â  =                                             --------(3)

 However, for every linear operator Â , there exists a set of functions  1 ,  2 ,………  n  

such that, 

Â   =  1  1 

Â   =  2  2                                                            ------(4) 

. 

. 

. 

Â   =  n  n 

  Where  1 ,  2 , …..,  n  are constant with respect to the variables of which  I’(I = 

1,2,3,..) are functions . the set of functions  1 ,  2 ,………  n   are called eigen functions of the 

operator Â and the constant  1 ,  2 , …..,  n  are called the eigen values belonging to the eigen 

functions   1 ,  2 ,………  n    respectively. 

1.9 Hermitian Operator 

 The operators which play important role in quantum mechanics can be further 

specialized. They are not only linear, they are Hermitian. Before we define Hermitian operator, 

we need to define the complex conjugate of a linear operator Â. Let us suppose, 

                                                     Â  =                                                     ------------(5) 

 The operator denoted by Â* is called the complex conjugate of the operator Â if, by the 

action of Â* on the function  *(complex conjugate of the function y), we get the function  * 

(complex conjugate of the function f), i.e., we get,                         
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                   Â*  *  =   *                                      ------------------(6) 

 In the domain of definition V in which the operator Â is defined, let u and v be two 

functions subject to identical boundary conditions. 

The operator Â is said to be Hermitian operator if it satisfies the condition, 

                             Â v     =      Â    v      =    Â*   v                                 --------(7) 

 Alternatively, the Hermitian character of the linear operator Â is made through the 

definition of transpose of the operator Â. The transpose of the operator Â is denoted by     and is 

defined according to the relation,   

                                    Âu)        =             Âv)                                             ---------(8) 

 The transposed operator     for the operator is, according to Equation(8), given by,                      

                                    u)        =                 v)                                            --------(9) 

 It is usual to denote as      (read as A-dagger) and is said to be the Conjugate to the 

operator Â . Now the operator Â is called Hermitian or self adjoint if,                  

                                                              Â =     

  We may note that in mathematics the terms adjoint, conjugate and associate operator are 

used for Â†. 

 1.10 Postulates of Quantum Mechanics           

Postulate 1:  

To every quantum mechanical state of a physical system of ‘s’ degree of freedom, there 

corresponds a function y, called the wave function. In general,   is a complex-valued function 

of generalized coordinates q1, q2, ......, qs and time ‘t’. The function y and its derivatives are 

single-valued, continuous and quadratically integrable over the entire domain of definition. 

The representation in which the wave functions are functions of coordinates and time is 

called coordinate representation, while the representation in which the wave functions are 

functions of the momentum components and time is called the momentum representation. In 

order to extract physically meaningful information from wave functions, the second, third and 

fourth postulates have been made. 

Postulate 2:  

For every observable of a physical   system, there corresponds a Hermitian operator. 
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In the Table below are given classical representations and corresponding 

quantum mechanical operators for the observables of a single particle.  

 

  

  Postulate 3: 

 The only possible result of a precise measurement of an observable A whose 

corresponding operator is Â are the eigen values an which are the solutions of the eigen value 

equation,     

                                                                      Â   =  n  n 

Where     n forms a complete set of functions called eigen function of Â. This means that 

any arbitrary state function can be expressed as a linear combination of the eigen functions.  

Postulate 4:  

When a system is in a state described by the wave function , the expected mean or 

expectation value, of a series of measurement of an observable, say A, is     

    = 
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  where Â is the operator corresponding to the observable A and the integration is carried over the 

entire domain of definition. It is usual to consider any state function, namely the wave function  

to be normalized, i.e., 

           =    1 

With normalized wave function, Eq. (ii) gives 

    =           

 To study the development of the state of a quantum system, a fifth postulate has been 

introduced. 

Postulate 5:  

The state function         of a physical system are solutions of the differential equation 

   
       

  
  =     (  ,t) 

 where the operator     corresponds to the total energy of the physical system at time t. It 

is, in general, a function of the operators for       and time t. 

 

1.11 Uncertainty Principle 

 Heisenberg, in 1927, stated the uncertainty principle (also called indeterminacy principle) 

in the following two parts: 

(i)  Experiment cannot determine simultaneously the component of momentum say px of a 

particle       and its corresponding coordinate position x with unlimited accuracy; instead, the 

precision of measurement is inherently limited by the measurement process itself, such that 

                                
 

 
                       --------(1) 

 In the above,      is the uncertainty within which the momentum    is known and the 

position x in the same experiment is known within an accuracy Dx. There are exactly similar 

relations for the other two components. 

         
 

 
                   -------(2) 

         
 

 
               ----------(3) 

(ii)  The uncertainties involved in simultaneous measurement of energy and time are given by, 
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The above relation means that an energy determination that has an uncertainty    must 

occupy at least a time interval    = 
 

   
 . Alternatively, if a system is in a given state for not 

longer than   , the energy of the system in that state is uncertain, at least by an amount    = 
 

   
. 
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UNIT II: 

ONE DIMENSIONAL AND THREE DIMENSIONAL ENERGY EIGEN VALUE 

PROBLEMS 

Square – well potential with rigid walls – Square well potential with finite walls – Square 

potential barrier – Alpha emission – Bloch waves in a periodic potential  - Kronig-penny square 

– well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a 

spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid 

rotator 

 

2.1 Square – well potential with rigid walls 

 A symmetric infinite square well potential is defined as 

                                                 V(x) = +   for x < – a 

                                                          = 0  for -a  x   a 

                                                           =  +   for x > – a 

and is represented in the Figure (2) 

Consider the motion of a particle of mass m in the one-dimensional potential described 

above 

 

Figure 2 symmetric infinite square 

 If  (x) is the wave function describing the state of the particle in the region -a  x   a 

then it satisfies the time-independent Schrödinger equation, 

      

   
 + 

  

  
 E  (x)  =  0 

      

   
 + k

2
 E  (x)  =  0                                                   -----------(1) 
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Where  

                                                 k =  
  

  
                                                                 ----------(2) 

 The most general solution of Equation (1) is given by, 

                                            (x)   = A sin (kx) + B cos (kx)                                                     ...(3) 

              Where A and B are constants. 

Since V(x) =   for x < – a and x > a, the wave functions in these two regions vanish giving, 

                                                      (-a) = 0 and  (+a) = 0                                 --------------(4) 

Using the conditions given by Equation (3) in Equation (4) we get 

A sin ka + B cos ka = 0                                               …………...( 5) 

A sin ka + B cos ka = 0                                                 ………… ...(6) 

For the above two equations to hold simultaneously we must have 

                               A sin ka = 0                                                             …… ...(7) 

and                      B cos ka = 0                                                             -----------(8) 

 In view of Equations (7) and (8) we may have A = 0 and B = 0 but these are physically 

unacceptable because  (x)    given by Equation (3) would then vanish. 

Since B π 0, we have from Equation (8), 

cos ka = 0 = cos 
  

 
,           n= 1, 3, 5, ... 

ka = 
  

 
    or k = 

  

  
                                                 -------------(9) 

Using Equation (1) in the above we obtain the energy eigen values 

                 En = 
  

  
 
     

  
   =  

       

    
                        n=1,3,5,…          -----------(10) 

The energy eigen functions corresponding to the above energy eigen values are 

          n(x) = B cos kx = B cos ( 
  

  
  )                          n = 1, 3, 5            -------(11) 
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The condition given by Equation (6) gives 

                    sin ka = 0 = sin                 (since A   0) 

or         ka =    or k =  
  

 
 ;                 n = 2  , 4, 6                                              --------(12) 

Using the above value of k in Equation (2) we get the energy eigen values 

                           En = 
  

  
 k

2 
 = 

       

    
          n= 2,4,6,…                          --------(13) 

The corresponding energy eigen functions are    

                                  n(x) =  A sin( 
  

  
  )                              n=2,4,6,…..                -----------(14) 

The normalization conditions of the wave functions,      

            
 

  
      =   1 

Lead to  

                                          A = 
 

  
    ,   B  =  

 

  
                                 --------------(15) 

We can thus write the set of energy eigen functions for the particle in the symmetric 

infinite square well potential as, 

 n(x) = 
 

  
 sin( 

  

  
  )                              n=2,4,6,…..    -----------(16) 

 n(x) = 
 

  
 cos( 

  

  
  )                              n=1,3,5,…..   -----------(17) 

and the discrete set of energy eigen values as 

                                          En  = 
       

    
                          n= 2,4,6,…              --------(18) 
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2.2 Square well potential with finite walls 

 A symmetric square well potential of finite depth is described by potential function V(x) 

of the form 

                                        V(x) =  V0 for  x < – a                (Region I) 

                                                          = 0  for   -a  x   a         (Region II) 

                                                           = V0    for   x  > a           (Region III) 

 

Figure 3 potential function 

Consider the motion of a particle of mass m in the potential well described above. 

The Schrödinger equation in Regions I and III is, 

- 
   

  
 
        

   
   +     V0         =   E                                                     

                         
        

   
   +   

   

  
   (E - V0 )        =   0                              ----------------(1) 

In Region II the Schrödinger equation is 

                                     
        

   
   +   

   

  
   E         =   0                                  ---------(2) 

which can be put in the form 

                                      
        

   
   +  k

2   E         =   0                               ---------(3) 

Where                                   
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                                                k=      
  

  
                                              ------ (4) 

Let us consider the cases where: E < V0, and E > V0                              

Case E < V0:  

We may write Equation (2) in the form 

                                         
        

   
   -            =   0                                           ---------(5) 

Where 

                                               =  
  

  
                                                            -----------(6) 

The most general solution of Equation (5) is  

                                                        = A        +       B                  -----------(7) 

            A, B are constant         

Specific solution in Region I 

                                                    = A                                   ----------(8) 

Specific solution in Region III    

                                                   = A                                -------  (9) 

Solution of Equation (3) gives the wave function in region II 

                                         =  C sin (kx)  +  D cos (kx)                      -----------  (10) 

                   is either symmetric or anti symmetric about x = 0. The first term in Equation (10) 

is anti symmetric because sin (kx) = – sin (– kx). The second term is symmetric because            

cos (kx) = cos (– kx). 

Case E > V0: 

The Schrodinger equation in Regions I and III is given by, 

        

   
   +   

   

  
   (E - V0 )        =   0 

 Since E is greater than V0,  
   

  
   (E - V0 ) is a real positive quantity. As such the solution 

of the above equation is sinusoidal in nature. The probability density for the particle is 

distributed over all space in regions I and III. It is also distributed in Region II, i.e., within the 

well. Thus we do not get bound state for the particle. 
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2.3 Alpha emission 

 Radioactive nuclei disintegrate by the emission of alpha (a) particle which is the nucleus 

of a helium atom having charge of +2e and a mass 4 units. 

 An -particle remains bound within the nucleus by a strong, attractive, short range 

nuclear force. This attractive nuclear force acts upto a distance which is approximately equal to 

the radius of the nucleus. When the -particle comes out of the nucleus then it experiences a 

long range coulomb repulsive force due to the residual nucleus (the nucleus that remains after the 

emission of the -particle). The variation of the potential energy of the -particle with distance 

from the center of the nucleus is qualitatively as shown in the Figure 4. 

If r0 be the radius of the nucleus and Ze be the change of the residual nucleus then the 

coulomb potential energy of the -particle just beyond the surface of the nucleus becomes 

 

    
  
    

  
.  For the -emitting nuclides this energy is several times larger than the energy of the 

-particles. 

 

Figure 4 potential energy of the alpha particle 

 Let E be the energy of the -particle emitted from the nucleus. Let the repulsive coulomb 

potential energy of the nucleus be equal to E at a distance r1 from the center of the nucleus. We 

then have, 

E  =  
 

    
  
    

  
                                              ------(1) 

    = 
 

    
  
    

 
                                                         -----(2) 
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 We may, for some qualitative understanding of the phenomenon of -emission, consider 

the potential V(r) in the region r0   r    r1 as a one dimensional square potential barrier and 

use the result of the last section to write the transmission coefficient from the barrier as,  

                          T  =  
          

  
   exp (-  

  

  
      )(r1 – r0)                ------(3) 

                                         = 
 

    
  
    

  
     =    

 

    
  
    

  
                                  -------(4) 

A rigorous treatment yields the transmission coefficient to be, 

T  =  exp(- 
 

 
           
  
  

) dr 

T  =  exp(- 
 

 
       

 

    
  
    

 
  

  
  

) dr                                     ---------(5) 

 The speed of an -particle in a heavy nucleus has been estimated to be  of the order of 

10
7

 ms
-1

. Considering the nucleus’s radius to be 10
-14

 m we find that the time taken by the -

particle to move once across the nucleus to be 10
-21

. Clearly the -particle strikes the coulomb 

barrier at the surface of the nucleus 1021 times per second. The probability that the -particle 

crosses 

the barrier and comes out of the nucleus per sec is,  

P = T × 10
21 

The reciprocal of P gives the life time of the -decaying nucleus, i.e., 

   = 
 

 
   =  

 

        
 

If be the disintegration constant of the nucleus we get, 


 

  


T × 10
21 

  

                                      =  10
21 

 exp(- 
 

 
       

 

    
  
    

 
  

  
  

) dr                                      

             Taking its logarithm we get from the above, 
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                                      log = A + BE,                                            

 A and B Constants 

                       which is the well-known Geiger-Nuttal law.    

 

2.4 Block waves in a periodic potential 

 Consider the motion of an electron in a one-dimensional periodic potential.  A one-

dimensional metal crystal consisting of a number of stationary positive ions provides a periodic 

potential of period d.  that is 

                 V(x + nd)  = V(x),                                n=0,1,2,……..--------------(1) 

 Consider a crystal lattice with N ions in the form of a closed loop.  The Schrodinger 

equation at points x and (x+d) is then 

 

Figure 5 one-dimensional crystal lattice along with the periodic potential 

      

   
 + 

  

  
 [ E -V(x)]       =  0                                   ------- -(2) 

        

   
 + 

  

  
 [ E -V(x)]         =  0                                   --------(3) 

Since       and        satisfy the  same equation, the two can differ only by a multiplicative 

constant, say  . 

       =        

And 

                                                =                                                       -------(4) 
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Since the lattice is in the form of a ring 

                                       =           =                                              -------(5) 

Hence, 

                            =  1  or        =  exp(2   )                   n = 0, 1,…….(N-1)                  -------(6) 

Therefore, 

                                         = exp(2     )              n = 0,1,………..(N-1)                  -------(7) 

It mean that  

                                                      =         u(x)                                    ------(8) 

Where      

                u(x + d)  =  u(x)   and  k  =
   

  
                      n = 0, 1, 2,…….         ------(9) 

 the justification of equation(8) can easily be done by replacing x by (x + d) 

       =          u(x + d)  

               =             u(x + d)     

              =                     

                =         

 Which is equation(4),(8) with the condition in equation(9) is called Bloch theorem.  That 

is the solution of schrodinger equation of a periodic potential will have the form of a plane wave 

modulated by a function having the periodicity of the lattice.  Functions of the type as in 

equation(8) are sometimes referred to as Bloch function.      
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2.5 Kronig-Penny square-well periodic potential 

 In bloch theorem, we have considered a one-dimensional metal crystal consist of a 

number of positive ions providing a periodic potential.  The approximation of the periodic 

potential in figure(5) is known  as Kroning-Penney potential which is illustrated figure(6).  The 

width of each well be a and that of each barrier be b.  the period of the potential d = a + b.  then 

                   V [x + n(a+b)]  =  V(x + nd)  = V(x)                          ---------(10) 

In the region 0 < x< a, V(x) = 0, and the Schrodinger equation takes the form 

                       
    

   
 +   

 
    = 0,                 

 
 = 

  

  
  E                                      -------(11) 

 

Figure 6 the Kroning-Penny periodic potential 

In the region -b < x < 0, V(x) = V, then 

    

   
 -   

 
    = 0, 

                                                     
 
 = 

  

  
  E           , V>E                           -------(12) 

According to Bloch theorem, the solution of equation (11) and (12) must be of the type 

    =        u1(x)                   0 < x < a                       ----------(13) 

    =        u2(x)                   -b < x < a                       ----------(14) 

Substituting of equation(13) in (11) and equation(14) in (12) gives 

    

   
  +  2ik 

   

  
 + (   

     ) u1(x)     =  0                ------- (15) 
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  +  2ik 

   

  
 - (   

     ) u2(x)     =  0                ------- (16) 

Equation (15) let us assume a solution of the form 

   u1(x)     =                                            -------(17) 

with this value of u1(x)   equation(15) reduces to  

                              + 2ikm + (   
     )  =  0,    0 < x < a                      ------- (18) 

                                                          m = i ( k1 - k),     -i(k1 + k) 

hence the solution of equation(15) is 

         u1(x) =  A exp[i( k1 - k)x]  +  B exp[-i( k1 + k)x] ,     0 < x < a                            ------(19) 

in the same way 

         u2(x) =  A exp[i( k2 - k)x]  +  B exp[-i( k2 + k)x] ,     -b < x < 0                            ------(20) 

 The wave function and their derivatives must be continuous at x = 0. 

That is 

                         u1(x)        =  u2(x)        and 

                        
   

  
       =  

   

  
                                                     -----(21) 

These conditions give 

   A + B = C + D                                             ---------(22) 

                 i( k1 - k) A - i( k1 + k)B =  C ( k2 - ik) - D( k2 + k)                                 -------(23) 

As the potential is periodic, the value of the wave function at x = a must be equal to that at x = -

b.  hence, 

                                                  u1(x)        =  u2(x)        and 

                                
   

  
       =  

   

  
                                              -----(21) 
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With the conditions in equation(16) and (17) we have 

  A exp[i( k1 - k)x] + B exp[-i( k1 + k)x]  =  ( k2 - ik) C exp[-( k2 - ik)b]                                                                                                                                                                                       

                                                                                       -( k2 + ik)  D exp[( k2 + ik)x]     --------(22) 

And  

   i( k1 - k) A exp[i( k1 - k)a]  - i( k1 + k) B exp[-i( k1 + k)a]   =  ( k2 - ik)  C exp[-( k2 - ik)b]  -( k2                 

                                                                                        + ik)  D exp[( k2 + ik)x ]      ----------(23) 

 for nontrivial solution of equation (19) and (22,23),, the determinants of the coefficients 

of A, B, C and D should vanish.  This gives the relation 

                    
  

      
 

      
 sinh (k2b) sin(k1b) + cosh (k2b) cos(k1a)  =  cos(kd)                        -----(24) 

 As k1  and k2  are function of energy the left side is a function of energy. 

 The transcendental equation (24) can be solved graphically.  For that, the left side of 

equation (24) is plotted as a function of E / V (continuous curve)  and the limiting lines of 

cos(kd) =   1(broken lines) are also drawn.  The energy ranges for which cos(kd) is between -1 

and +1 are the allowed ones. 

 

Figure 7 graphical evaluation of energy values in the Kronig-Penney model 
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  2.6 Linear harmonic oscillator:  

Operator method         

 The energy eigen value equation, 

      =  E    

One of the fundamental features of quantum mechanics is that operators      = x and    

satisfy the commutation relation, 

                                                [      ]  =  i                                             -----------(1) 

In the following, we use this method to solve the energy eigen value problem for linear 

harmonic oscillator. As we shall see, the method allows us to find, with simplicity not only the 

expectation values of various physical quantities for the oscillator but also the energy eigen 

functions of the oscillator. 

The Hamiltonian operator of a harmonic oscillator of mass m oscillating along the 

x-axis under a force constant k is, 

                                         = 
   

   
  +  

 

  
 k                                           ------(2) 

Let us introduce two operators     and     according to, 

   =  
   

  
 x + i 

 

     
                                                -----------(3) 

                                =  
   

  
 x -  i 

 

     
                                                         --------(4) 

 In the above  is     the Hermitian adjoint of     and      is the natural angular frequency of 

the oscillator. From Equations (3) and (4) we obtain   

 

                             =   (  
   

  
 x + i 

 

     
     )     ( 

   

  
 x - i 

 

     
    ) 

                                              = 
   

  
    + 

 

     
     + 

 

   
 (          ) 

Using Equation (1) in the above we obtain 
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                                          =   
   

  
    + 

 

     
     + 

 

   
 (-i  ) 

                                           =  
 

   
 [ 

   

   
 

 

  
     

 ]   +  
 

  
  

                                           =  
  

   
  +  

 

  
                                                      -----------(5) 

Similarly, we obtain 

                                               =  
  

   
  -  

 

  
                                ---------(6) 

Adding Equations (5) and (6) we obtain 

                               2    
  

   
  =           +           

                                     = 
 

  
     (        

  +           )                               -------(7) 

Subtracting Equation (6) from Equation (5) we get 

                                          -             =   1   

Clearly, the operators    and     satisfy the commutation relation, 

                                  [   ,    ]  =  1                                                    ---------(8) 

We may also express the Hamiltonian operator    as 

                                =     (          
 

  
)                                                   --------(9) 

 

2.7 Particle moving in a spherically symmetric potential 

 In spherically symmetric problem, the potential depends only on the distance of the 

particle from a fixed point.  The time independent Schrodinger equation for such a system is 

                                         (r) +  
  

  
 ( E – V )  (r) =  0                       ------(1) 

 Since the potential is spherically symmetric, it is convenient to work in spherical polar 

coordinate, r,   ,   (0                           ).  Expressing equation (1) in polar 

coordinates, we get 
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(   

  

  
) + 

 

       
   
 

  
(     

  

  
)  + 

 

        
 
   

   
 + 

  

  
 ( E – V )   = 0       -------(2) 

Separation of the equation 

 Equation (2) can be separated into three equations by writing 

                    (r,    ) =R(r)  ( )  (  )                                                     ------(3) 

Substituting this for of   in equation (2) and multiplying by 

     
     

 
 
 

  
(   

  

  
) + 

     

 
   
 

  
(     

  

  
)  + 

  

  
 ( E – V(r) )          =   

 

 
 
   

   
                --------(4) 

The left hand side of above equation is function of r and   and the right side is a function of 

  alone.  This is possible when each side is a constant, say m
2
.  Then 

                                                
       

   
 = - m

2
  (  )                            ------(5) 

And  

    
     

 
 
 

  
(   

  

  
) + 

     

 
   
 

  
(     

  

  
)  + 

  

  
 ( E – V(r) )          = m

2
     -------- (6) 

Dividing both sides of equation (6) by       and rearranging, we get 

 

 
 
 

  
(   

  

  
) + + 

  

  
 ( E – V )     = 

  

     
   
 

  
(     

  

  
)  + 

  

       
 

 This is possible when both sides are equal to a constant, say   consequently, we get the 

  equation and the radial equation: 

                                   
 

     
  
 

  
(     

  

  
)  +  (  -  

  

       
 )    =  0                                   --------(7) 

And 

                        
 

  
 
 

  
(   

  

  
) + 

  

  
 ( E – V(r) )R - 

 

  
 R  =  0                                               -------(8) 

 Thus the three-dimensional wave equation (2) is separated into three one-dimensional 

equations (5), (7) and (8). 

Solution of    equation 

 The solution of equation (5) is straightforward and is given by 

       (   = A                     
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For   to be single valued,  

 (    =  (      . 

Therefore, 

A           =  A                      or 

          =   1 

This is possible only if m = 0,1,2,….  The quantum number m is called the magnetic quantum 

number.  The normalization condition gives, 

                                                      1  =      
  

 
 d     =  | A |

2 
    
  

 
  

Then 

| A |
2 
    = 1   or    A  =  

 

   
 

Except for an arbitrary phase factor which can be taken as zero.  The normalized solution is then 

  = 
 

   
                                 m = 0,  1,  2,…..                         ------ (9) 

  Some of the normalized  (    are given in below table.  As sin ( |m|   ) and  

cos ( |m|   ) are also solutions of equation (5) the real form of the solutions are also listed in 

table. 

 

 

 

 

 

 

 

 

 

 

 

 



 Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli 
 

 

                                                                                  40                                                Quantum Mechanics - I 
 

Table 1 few- normalized functions 

 

 

Solution of the   equation 

To solve the   equation, a new variable z = cos   is introduced.  On differentiating we get 

dz   =  - sin    d   

we may also write 

 

  
 = - sin   

 

  
  =  -  (1 – z

2
)
1/2

 
 

  
 

In terms of z, equation (7) is 

                           
 

  
  (       

     

  
)  +  (  -  

  

       
 )       =  0                --------(10) 

Which is associated Legendre equation.  Equation (10) has poles at z =   1.  For physically 

acceptable solution, 

   = l (l+1 )            l  =  0,1,2…….          M= 0,  1,  2,….. 

The solution of equation(10) is Legendre polynomial Pl(z) for m=0, and the associated Legendre 

polynomials   
   

(z) for m  0.  The normalized solution is then 

     = Nlm   
   

(z)                                          --------- (11) 
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Where Nlm  is the normalization constant.  The normalization condition is 

| Nlm |
2
    

   
   

  

  
   
   

(z) dz   =  1 

The orthogonality relation for associated Legendre polynomials 

                         
   
   

  

  
   
   

(z) dz    =  
         

              
                         -------(12) 

Leads to 

                                        
 ( ) =    

              

         
   
  (cos  )                                  ------(13) 

Where   = (-1)
m

 for m > 0 and 

             =1 for m   0 as per the established phase convention. 

2.8 System of two interacting particles 

 Consider the motion of a particle in a potential field.  However, there are situations 

wherein we have two interacting particles moving in a three-dimensional space.  The wave 

equation of such a system can be reduced into two one-particle equations, one representing the 

translational motion of the center of mass and the other the relative motion of the two particles. 

Hamiltonian operator  

  The position vectors and masses of the two particles are shown in figure.  The radius 

vector of the center of mass 

                                               R  =  
              

        
                                        -------(1) 

 

Figure 8 System of two interacting particles 
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The relative position vector is given by 

                                                        r = r1  -  r2                                  ------------(2) 

from equation(1) and (2) we have 

r1  =  R  +  
     

        
 

r2  =  R  -  
     

        
                        --------(3) 

The momenta of the two particles can be written as 

p1 = m1     =   m1      +        

p2 = m2     =   m2      +                                       --------(4) 

where  

                                                       = 
        

        
                                                    ---------(5) 

Is called the reduced mass of the particles.  Assuming the potential to  be dependent only on the 

distance between the two particles,  the Hamiltonian of the system is 

                                                 H  =  
  

 

   
     

  
 

   
  +  V(r)                                          --------(6) 

Substitute the value of p1 and p2 

H  =  
 

 
 (        )    + 

 

 
 ( 

 

   
  

 

   
)        +  V(r) 

     =  
 

  
  

   +  
 

  
   

     +  V(r)                                          ------(7) 

Where M  =          =  M    and pr  =   r.  replacing the dynamical variables by the 

corresponding operators and writing 

  
   = 

  

   
   +  

  

   
    +   

  

   
  and 

  
   = 

  

   
   +  

  

   
    +   

  

   
                                      ------(8) 

H  =  - 
  

  
   

  -  
  

  
   

   +V(r)                                  --------(9) 

The time-independent Schrodinger equation is then 

                        [- 
  

  
   

  -  
  

  
   

   +V(r) ]  (R,r)  =   ET    (R,r)              ---------(10) 
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Wave equation for Relative motion 

Equation (10) can be separated into two equations by writing 

                                                    (R,r)  =    (R)  (R)                                -----------(11) 

With this for of   (R,r)   , equation(10) reduces to     

                   - 
  

  
   

    (R)  =   
  

  
  

 

      
      

          +   ET    -  V  -----------(12) 

For the validity of equation (12) each side must be equal to constant, say Et, 

                                                 - 
  

  
   

    (R)  =  Et    (R)                           --------(13) 

And 

                                    -  
  

  
   

  (r)  +V(r)   (r)  =  (ET   -  Et)  (r)                         ---------(14) 

 As equation (13) is the same as a free-particles equation of mass M, it describes the 

translational motion of the system in space.  Equation (14) is the same as the Schrodinger 

equation of  a particle of mass   moving in a fields of potential V(r) and represents the relatives 

motion of the two particles.  The energy for the relative is 

ET   -  Et  =  E. 

 In the coordinate system in which the center of mass is at rest, Et  =  0  and then E is the 

total energy of the system.  Thus, the Schrodinger equation for relative motion is, 

-  
  

  
    (r)  +V(r)   (r)  =  E  (r) 

2.9 Hydrogen atom 

 Theory  of hydrogen atom is of fundamental importance as it provides the basis for the 

theory of many electron systems.  Also, this is the only atom for which exact solution of the 

Schrodinger equation is possible.  Consider hydrogen like atom which consists of a nucleus of 

chare Ze and an electron of charge -e separated by a distance r.  The potential is Coulombic and 

is given by 

    V(r)  =  -  
    

 
                              -------(1) 

The time-independent Schrodinger equation for relative motion is given by 

(-  
  

  
        

    

 
 )   (r)     =  E  (r)                        ------(2) 
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Radial equation 

 Expressing equation (2) in spherical polar coordinates(r,   )  and separating the 

variables  

     (r,    ) =R(r)  ( )  (  )                                                     ------(3) 

We get the radial equation 

 

  
   
 

  
(   

  

  
) + [ E -  

        

  
 + 

    

 
 ] R  =  0                           ------(4) 

the solution of the angular part is the spherical harmonics, Ylm (   ). 

  To solve equation(4) let us introduce a variable   and a constant   defined by 

                                        =  
    

  
 r,                  =  

    

  
  

 

   
                                 ---------(5) 

  As E negative for bound states,   and a constant   are real quantities.  In terms of 

the new variables equation(3) becomes 

   

   
 + 

 

 
 
  

  
  +  [ - 

 

 
  -  

      

  
]  R  =  0                            ----------(6) 

 

Solution of radial equation 

 Its asymptotic solution can be investigated first.  When      ,  equation(6) reduces to 

   

   
  -  

 

 
  R  =  0 

Its solutions are 

R  =        and      

Out of these two solutions, only       is acceptable since          .  The exact solution of 

equation(6) be 

    R( )  =         F( )                                              -------------(7) 

Substitution of equation(7) in equation(6) gives the differential equation satisfies by F(   as 

                               
   

   
 +   (2 -   ) 

  

  
  +  [     – l(l+1) -   ]  F( )  =  0                 ---------(8) 

When   = 0, we get 

l(l+1) F(0)  =  0  or 

F(0)  =  0,                           l   0                                           -----------(9) 

Therefore if we try a power series solution for F( )  it must not contain a constant term.  Hence, 

    F( )  =       
    

                                ---------(10) 
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With this value of F( )  equation(8) reduces to  

                
      

     +       
                          

     =  0 --

(11) 

 Equation(11) is valid for all values of   only if the coefficient of each power of   

vanishes separately.  Equating the coefficient of    to zero, we have 

                                     
            =  0 

Or 

            =  0            (as       ) 

(c-l) (c +l + 1)  =  0 

therefore , 

  c = l ,  c  =  -(l + 1)                                                ------(12) 

if ,  c  =  -(l + 1)   the first term in F( )  would be    /  
    which tends to infinity as    .  

Hence, c = l is the only acceptable value.  Setting the coefficient of        in equation(11) to 

zero, we obtain 

       
         

             
                                         ---------(13) 

This recursion relation allows us to determine the coefficients a1, a2, a3,….  In terms of a0 which is 

quite arbitrary.  For large values of k, we get from equation (13) 

   
    

  
  =  

 

 
 

In the expansion 

      =   
 

  
 
        =     

 
         

 
    

  
  =  

  

      
  =  

 

   
   
   
    

 

 
 

Hence, as k   , the series for F( ) behaves like         and  

 R( ) =               

This value of R( ) is not aceptable and therefore the series must break off after a certain value of 

k,  say n’ .  then equation(13) 

                                           l  + n’ + 1-   =  0,             n’   =  0,1,2,….                         --------(14) 
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Energy eigen values 

Defining a new quantum number n by 

N = l + n’ + 1  =     =  
    

  
  

 

   
 

Squaring and simplifying 

En  =  
     

       
       

          

      =     -   
     

      
      

    ,                n  =  1,2,3…..                 -------(15) 

Since n’ and l  are integers including zero. 

  n =  1,2,…..                                                          ----------(16) 

 as n    l + 1, the highest possible value of l  is n – 1.  Thus 

 l  =  0,1,2,……(n - 1)                                             --------(17) 

The new quantum number n is called the principal quantum number which determines the 

energy. 

 

Radial wave functions 

                   The above restriction in energy makes the series for  

                                                      F( )  =              L( )                                          ------------(18) 

Equation(8) reduces to 

                      
      

   
  +          

     

  
 + (n-l-1) L( )   =    0                      ------(19) 

The associate Laguerre polynomial of order p and degree (q - p), denoted as   
 

( ), satisfies the 

equation 

                              
    

 
   

   
  +         

   
 
   

  
 + (q - p)   

 
( )   =    0                      ------(20) 

Equation (19) and (20) are identical if L( )   is taken as     
    ( )   .  hence 

                                     Rnl (r)  =  N             
    ( )                              ----------(21) 

The normalization integral 

    
  

 
(r)   dr  =  1 

Allows the determination of the constant N.  hence 
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 |N|

2
 
           

        
   =   1 

Or 

                                            |N|  =    {(
      

   
)  

        

           
                               -----------(22) 

Thus, the normalized radial wave functions are 

                     Rnl (r)  =  - {(
  

   
    

        

           
                 

    ( )                               --------(23) 

Where 

                                                                                  = 
     

  

   
                                 --------(24) 

                              The negative sign is selected to make R10 positive.  As   is approximately 

equal to the electron mass,    =       the Bohr radius.  Some of the radial wave function are 

given in the table.  It may be noted that at the origin the wave functions R10, R20, R30 are finite 

whereas R21, R31, R32  are zero. 

Table 2 the first-six radial wave functions of a Hydrogen-like atom 
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 2.10 Rigid rotator 

 A rigid rotator consists of two masses m1 and m2 separated by a fixed distance r.  

consider the rotation of the system about an axis passing through the center of mass and 

perpendicular to the plane containing the two masses.  For free rotation, the potential V(r) = 0.  

As r is fixed, the wave function will depend only on the angles   and  .  In spherical polar 

coordinates, the Schrodinger equation for relative motion reduces to 

                    -  
  

  
 [ 

 

       
   
 

  
(     

 

  
)  + 

 

        
 
  

   
  ]   ( ,  )  =  E   ( ,  )            -------(1) 

Or 

              
 

     
  
 

  
(     

 

  
)    +  

 

       
 
   

   
  + 

     

    
   ( ,  )   =  0                ---------(2) 

Writing           

                                                           
     

    
  =  

   

    
   =                                                      --------(3) 

And  

                                                           ( ,  )   =                                                  ---------(4) 

Equation(2) reduces to the following two equations: 

                                                  
      

   
   =  - m

2                                                ----------(5) 

And  

                               
 

      
  
 

  
(     

  

  
)    +  (  -  

  

       
 )       =  0                                   --------(6) 

Where I  =      is the moment of inertia of the rotator and m
2
 is a constant.  Hence, the rigid 

rotator wave functions are the spherical harmonics Ylm ( ,  ).   From the solution, it follows that 

   l (l + 1).  From equation(3) the energy eigenvalues are 

                                            El  =  
        

  
                         l  =  0,1,2,….                                     (7) 

  This constitutes a set of quantized energy levels with 
        

  
 separation between 

any two consecutive levels.  (l is the quantum number of the lower state).  Since (2l+1) values of 

m are possible for a given value of l, each state is (2l+1) – fold degenerate. 
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UNIT III: 

GENERALFORMALISM 

 Dirac notation – Equations of motions – Schrodinger representation - Heisenberg representation 

– Interaction representation – Coordinate representation – Momentum representation – 

Symmetries and conservation laws – Unitary transformation – Parity and time reversal 

 

3.1 DIRAC’S BRA KET VECTORS 

 In Dirac’s formulation, quantum mechanics is developed without using any specific 

representation and instead it uses the concept of vectors in a space that may have a finite or an 

infinite dimension. 

Wavefunction as Vector; Ket Vector 

 With each state of a dynamical system is associated a ket vector. A general ket is denoted 

by the symbol | > . The ket vectors with labels inside such as |a> , |b>, etc., designate particular 

states. The state ket is postulated to contain complete information about the physical state. The 

ket vector space is a linear vector space by which we mean that if C1 and C2 are two complex 

numbers and |a> and |b> are two ket vectors in a given space, the linear combination, 

                                         |a> = C1 |a> + C2 |b> 

is also a ket vector in the space of | a> and | b> and represents a state of the system. 

Scalar Product, Bra Vector 

 With each ket |a>, a complex number f is associated. The set of numbers associated with 

different |a> ‘s is a linear function of |a> . This means that the number associated with 

                                 ( |a1> + |a2> ) , where |a1> and |a2> are two kets, is the sum of the numbers 

associated with |a1>  and |a2>  separately. Similarly, the number associated with C |a> , where C 

is a complex number, is C times the number associated with |a> . The above results may be 

written as, 

f (|a1>   + |a2>) = f (|a1>) + f ( |a2>  ) 
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f (C |a>) = C f  | a> 

The number f associated with all the kets in ket space may be visualized as defining a 

vector in another space (dual space) denoted, following Dirac, by the symbol <f | . and called the 

bra vector. 

3.2 Schrodinger representation 

 In physics, the Schrödinger picture, also termed as the Schrödinger representation is a 

formulation of quantum mechanics in which the state vectors evolve in time, but the operators 

(observables and others) are constant with respect to time. This differs from the Heisenberg 

picture which keeps the states constant while the observables evolve in time, and from the 

interaction picture in which both the states and the observables evolve in time. The Schrödinger 

and Heisenberg pictures are related as active and passive transformations and commutation 

relations between operators are preserved in the passage between the two pictures. 

In the Schrödinger picture, the state of a system evolves with time. The evolution for a 

closed quantum system is brought about by a unitary operator, the time evolution operator. 

For time evolution from a state vector  |           at time t0  to a state vector |           at 

time t, the time-evolution operator is commonly written U(t, t0) and one has, 

|        = U(t, t0) |        

In the case where the Hamiltonian of the system does not vary with time, the time-

evolution operator has the form, 

U(t, t0) = exp(-iH(t - t0) /   ) 

Where the exponent is evaluated via its Taylor series. 

The Schrödinger picture is useful when dealing with a time-independent 

Hamiltonian H; that is,  

  H  =  0. 

In elementary quantum mechanics, the state of a quantum-mechanical system is 

represented by a complex-valued wavefunction ψ(x, t). More abstractly, the state may be 

represented as a state vector, or ket |    . This ket is an element of a Hilbert space, a vector space 

containing all possible states of the system. A quantum-mechanical operator is a function which 

takes a ket |    and returns some other |    . 
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The differences between the Schrödinger and Heisenberg pictures of quantum mechanics 

revolve around how to deal with systems that evolve in time: the time dependent nature of the 

system must be carried by some combination of the state vectors and the operators. For example, 

a quantum harmonic oscillator may be in a state |    for which the expectation value of the 

momentum,        |    oscillates sinusoidally in time. One can then ask whether this sinusoidal 

oscillation should be reflected in the state vector |    , the momentum operator    , or both. All 

three of these choices are valid; the first gives the Schrödinger picture, the second the Heisenberg 

picture, and the third the interaction picture. 

 

The Time Evolution Operator 

The time-evolution operator U(t, t0) is defined as  the operator which acts on the ket at 

time t0 to produce the ket at some other time t: 

|          =  U(t, t0) |        

For Bras, we instead have 

|          =               
 (t, t0) 

Properties 

Unitarity:  

The time evolution operator must be unitary. This is because we demand that the norm of 

the state ket must not change with time. That is, 

                    =              
 (t, t0) U(t, t0) |        

=                   

Therefore, 

  (t, t0) U(t, t0)  =  I 

Identity: 

 When t = t0, U is the identity operator, since 

        = U(t, t0)            

Closure:  

 Time evolution from t0 to t may be viewed as a two-step time evolution, first from t0 to 

an intermediate time t1, and then from t1 to the final time t. Therefore 

U(t, t0)  = U(t, t1)  U( t1, t0) 
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3.3 Heisenberg representation 

       In physics, the Heisenberg picture, also called the Heisenberg representation, is a 

formulation given by Werner Heisenberg in 1925, of quantum mechanics in which the operators 

(observables and others) incorporate a dependency on time, but the state vectors are time-

independent, an arbitrary fixed basis rigidly underlying the theory. 

It stands in contrast to the Schrödinger picture in which the operators are constant, 

instead, and the states evolve in time. The two pictures only differ by a basis change with respect  

to time-dependency, which corresponds to the difference between active and passive 

transformations. The Heisenberg picture is the formulation of matrix mechanics in an arbitrary 

basis, in which the Hamiltonian is not necessarily diagonal. It further serves to define a third 

hybrid picture, the interaction picture. 

In the Heisenberg picture of quantum mechanics the state vectors, |ψ(t), do not change 

with time, while observables A satisfy, 

 

  
 A(t)  =  

 

 
 [H, A(t)]  +  ( 

  

  
    

Where H is the Hamiltonian and [•,•] denotes the commutator of two operators (in this 

case H and A). Taking expectation values automatically yields the Ehrenfest theorem, featured in 

the correspondence principle. By the Stone–von Neumann theorem, the Heisenberg picture and 

the Schrödinger picture are unitarily equivalent, just a basis change in Hilbert space. In some 

sense, the Heisenberg picture is more natural and convenient than the equivalent Schrödinger 

picture, especially for relativistic theories. Lorentz invariance is manifest in the Heisenberg 

picture, since the state vectors do not single out the time or space. 

This approach also has a more direct similarity to classical physics: by simply replacing 

the commutator above by the Poisson bracket, the Heisenberg equation reduces to an equation in 

Hamiltonian mechanics. 

 

3.4 Interaction representation 

 In quantum mechanics, the interaction picture, also known as the Dirac picture named 

after Paul Dirac, is an intermediate representation between the Schrödinger picture and the 

Heisenberg picture. While the other two pictures either the state vector or the operators carry 
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time dependence, the interaction picture carry both the part of the time dependence of 

observables (probability amplitudes). The interaction picture is advantageous since it consider 

the changes to the wave functions and observables due to interactions. Most field-theoretical 

calculations typically use the interaction representation because they provide the solution to 

the various Schrödinger equations as the solution to the free-particle problem and also for some 

unknown interaction parts. 

Equations that include operators at different times, which hold in the interaction picture, 

do not necessarily hold either in the Schrödinger picture or in the Heisenberg picture. This is 

because time dependent unitary transformations relate operators in one picture to the analogous 

operators in the others. Operators and state vectors in the interaction picture are related by a 

change of basis (unitary transformation) to those same operators and state vectors in the 

Schrödinger picture. 

To switch into the interaction picture, we divide the Schrödinger picture Hamiltonian into 

two parts: 

Hs = H0,s + H1,s 

Any possible choice of parts will yield a valid interaction picture; but in order for the 

interaction picture to be useful in simplifying the analysis of a problem, the parts will typically 

be chosen so that H0,s is well understood and exactly solvable, while H1,s contains some harder-

to-analyze perturbation to this system. 

If the Hamiltonian has explicit time-dependence (for example, if the quantum system 

interacts with an applied external electric field that varies in time), it will usually be 

advantageous to include the explicitly time-dependent terms with H1’s, leaving H00’s time-

independent. We proceed assuming that this is the case. If there is a context in which it makes 

sense to have H0’s be time-dependent, then one can proceed by replacing  

exp(            ) 

by the corresponding time-evolution operator in the definitions below. 
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3.5 Coordinate representation 

 Some of the important operators associated with observables in the coordinate 

representation are given in table  

 

Figure 9 Classical observables and their quantum mechanical operators 

3.6 Momentum representation 

 The wave function is a function of the coordinates and time.  In such a case, we have the 

coordinate or position representation.  In certain case, it is convenient to work in the momentum 

representation in which the state function of a system   (p,t) is take as a function of momentum 

and time.  In the coordinate representation, the operator for the coordinate r is simply r and the 

operator p is -i   .  However, in the momentum representation, the momentum p is represented 

by the operator p itself and the coordinate is represented by a differential operator.  Since p = k     

The momentum space is equivalent to a k space in which the operator for k is k itself.  Relations 

in the momentum representation equivalent to the ones in the coordinate representation can be 

easily be derived. 

       =              
 

  
 

 

  
       dx 

         =  
   

   
    
 

  
     
 

  
      exp(

    

 
) dp  

 

  

 

  
             

     

 
 dp’ 

                               =  
 

 
     
 

  
      dp  

 

  

 

  
        dp’ 
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                                 =  
 

 
     
 

  
      dp  

 

  

 

  
                  dp’ 

                               =     
 

  
        p dp 

Thus the operator for momentum in the momentum space is p itself. 

 

3.7 Conservation laws 

Conservation of momentum 

 The unitary infinitesimal operator is given by 

UT  =  I  -  
    

 
 

It follows immediately 

   H’ = UT H   
 
 

       =  (I  -  
    

 
) H (I  +  

    

 
) 

                                         =  H  - 
  

 
 [p, H] 

 Hence, invariance of the Hamiltonian under translation in space requires that the linear 

momentum operator p must commute with H.  this implies that the linear momentum of the 

system is conserved.  Thus, the conservation of  linear momentum of physical system is a 

consequence of the translational invariance of the Hamiltonian of the system.   the above 

equation holds good only for isolated systems wherein H does not contain a potential energy 

term which is usually a function of r. 

Conservation of energy 

  For an infinitesimal time translation   in a similar way 

                         (x,t) =    (x,t+  )  =    (x,t) +   
  

  
  

                                                         =    (x,t) + 
 

 
   ( -i  

 

  
 )   (x,t) 

                                                         =  [ 1 + i   (- 
 

 
)]   (x,t)                                           --------(1) 

 The Unitary operator corresponding to infinitesimal displacement   in time of the system 

is given by 
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                        U  =  I  -  
 

 
   H                                                         ------(2) 

 Where H is the Hamiltonian which is independent of time.  The invariance of the 

Hamiltonian under translation in the requires that 

H
’ 
 =  UH    =  H             or 

                                                                   UH = HU                                                       ------(3) 

  It is obvious from the form of U that it commutes with H as it is independent of time.  

The time independent of H means that the total energy of the system is conserved.  Thus, the 

total energy of the system is conserved if the system is invariant under translation in time.  If H 

depends on time, it will not be invariant under translation in time. 

 

Conservation of angular momentum 

 The unitary operator corresponding to an infinitesimal rotation   about an arbitrary axis n 

is given by 

                                   UR (n,  ) =  I  +  
  

 
                                                           ------(1) 

Where J is the total angular momentum.  For H to be invariant under the transformation, H
’
 must 

equal to H. 

   H
’ 
 =  UR H  

    

       = ( I  +  
  

 
     ) H ( I  -  

  

 
    ) 

    =  H + 
  

 
 n.[J, H]                                          --------(2) 

 This is the condition for invariance of H requires that  

[J, H] = 0. 

 Thus, conservation of total angular momentum is a consequence of the rotational invariance of 

the system. 
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3.8 Time reversal 

 Discrete transformation is one in which the time is reversed, t  = -t.   denoting the wave 

function after time reversal    (r, t ), we have 

                           (r, t ) =  T   (r,t),                        t  = -t                            ------(1) 

 Where T is the operator that effects the transformation.  Let A be a time-independent 

operator associated with an observable and A’ be its transform.  Consider the equation 

                                 A    =                                                    --------(2) 

Then 

                                  = TA    

                                                    = TAT-1 T    

                                                   = (TAT-1) T     

                                                  = (TAT-1)     

         =       

Where  

                                                           = TAT-1                                          -----------(3) 

 we shall now investigate the effect of the operator T on observables.  To be in conformity 

with the time-reversal invariance in classical mechanics, we require that the position operator r 

be left unchanged and the momentum operator shall change sign under time reversal. 

Mathematically, 

    = T r T-1  =  r 

    = T p T-1  =  -p 

    = T L T-1  =  -L                                                           ------(4) 

we now evaluate the fundamental commutation relation [       ] 

                         [       ] =  [ T x T-1   , T     T-1  ] 

by virtue of equation (4) 

T x T-1    =  x and  
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T     T-1   =  -   

Therefore 

                      [       ] =  [x,     ]  =  - i                                          ------(5) 

The value of [       ] commutator can also be written as  

                        [       ] =  T [x,   ] T-1  =  T(i  ) T-1              ------(6) 

From equation (5) and (6)  

                   T  (i  )  T-1    =  -i                                                           ---------(7) 

which is possible only if T operating on any number changes it into its complex conjugate. 
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UNIT IV: 

APPROXIMATION METHODS 

Time independent perturbation theory for non-degenerate energy levels –Degenerate energy 

levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium 

atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – 

Application to simple harmonic oscillator. 

 

4.1 Time independent perturbation theory 

 Time independent perturbation theory is one of two categories of perturbation theory, the 

other being time dependent perturbation. In time independent perturbation theory the 

perturbation Hamiltonian is static, i.e., possesses no time dependence. The time independent 

perturbation theory was presented by Erwin Schrödinger in a 1926 paper, shortly after he 

produced his theories in wave mechanics. In this paper Schrödinger referred to earlier work of 

Lord Rayleigh, who investigated harmonic vibrations of a string perturbed by small in-

homogeneities. This is why this perturbation theory is often referred to as Rayleigh–Schrödinger 

perturbation theory. 

First Order Corrections 

Consider an unperturbed Hamiltonian, H0, which is also assumed to have no time 

dependence. It has known energy levels and eigen states, arising from the time independent 

Schrödinger equation of the form: 

H0             =    
                           n = 1,2,3,…. 

For simplicity, assume that the energies are discrete. The (0) superscripts denote that 

these quantities are associated with the unperturbed system. Note the use of bra–ket notation. 

 Now introduce a perturbation to the Hamiltonian. Let V be a Hamiltonian representing a 

weak physical disturbance, such as a potential energy produced by an external field. Thus, V is 

formally a    Hermitian   operator.   Let λ   be a   dimensionless parameter that can take on values 

ranging continuously from 0 (no perturbation) to 1 (the full perturbation). The perturbed 

Hamiltonian is represented as, 

H =  H0  +  λ V 
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The energy levels and eigen states of the perturbed Hamiltonian are again given by the 

Schrödinger equation: 

( H0  +  λ V )          =            

 The objective is to express En and         in terms of the energy levels and eigen states of 

the old Hamiltonian. If the perturbation is sufficiently weak, we can write them as a (Maclaurin) 

power series in λ: 

   =   
    + λ   

     +       
        

       =             + λ              +                 ………. 

Where,  

  
    = 

 

  
 
      

   
     

 

             = 
 

  
 
          

   
     

 When k = 0, these reduce to the unperturbed values, which are the first term in each 

series. Since the perturbation is weak, the energy levels and eigenstates should not deviate too 

much from their unperturbed values, and the terms should rapidly become smaller as we go to 

higher order. Substituting the power series expansion into the Schrödinger equation, we obtain, 

( H0  +  λ V )(            + λ              +              …)  = (  
    + λ   

     +       
       )  

                                                                                              + λ              +                ..)        

 Expanding this equation and comparing coefficients of each power of λ results in an 

infinite series of simultaneous equations. The zeroth-order equation is simply the Schrödinger 

equation for the unperturbed system. The first order equation is, 

H0           + V            =    
              +   

               

 

 Operating through by           , the first term on the left-hand side cancels the first term on 

the right-hand side as per the unperturbed Hamiltonian is Hermitian. This leads to the first order 

energy shift: 

  
    =                       
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 This is simply the expectation value of the perturbation Hamiltonian while the system is 

in the unperturbed state. 

 

 

4.2 The Stark Effect for n = 2 Hydrogen 

The Stark effect for the n = 2 states of hydrogen requires the use of degenerate state 

perturbation theory since there are four states with (nearly) the same energies. In the first 

calculation, we will not consider the hydrogen fine structure and assume that the four states are 

exactly degenerate, each with unperturbed energy of E0. That is 

                                                                  H0      =  E0      

  The degenerate states are φ200, φ211, φ210 and φ21(−1). 

The perturbation due to an electric field in the z direction is H1 = + e   . 

So the first order degenerate state perturbation theory equation is, 

                                               
             

     = (E0 + E
(0)

       

     This is essentially a 4 x 4 matrix eigenvalue equation. There are 4 eigenvalues , (E0 + E
(1) 

) 

distinguished by the index n . 

 Because of the exact degeneracy (    
    = E0      ) then     E0  can be eliminated from 

the equation. 

                                             
     = (E0 + E

(1)
 )     

                                  +            
               =  E0     + E

(1)
      

                                                       
               =  E

(1)
      

This is just the eigen value equation for H1 which we can write in (pseudo) matrix form as 

follows, 

                                         

  
  
  
  

     =  E
(1)   

  
  
  
  

      

 Now, in fact, most of the matrix elements of H1 are zero. We can define that because 

[Lz, z] = 0 , 
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  hence all the matrix elements between states of unequal are zero. Another way of saying this is 

that the operator z does not ‘change’ .  

The equation that is labelled with the basis states to define the order is. 

 

 We can see by inspection that the eigenfunctions of this operator are φ211, 

φ21−1, and  
   

   
            with eigenvalues (of H1) of 0, 0, and    . 

    =            
     (1-

 

   
) exp(- 

 

   
)           

     
 

  
 ( 

 

  
 ) exp( 

 

   
 ) Y10  d

3
r 

 

 This is first order in the electric field, as we would expect in first order (degenerate) 

perturbation theory.  

If the states are not exactly degenerate, we have to leave in the diagonal terms of H0. 

Assume that the energies of the two (mixed) states are E0    , where Δ comes from some other 

perturbation, like the hydrogen fine structure. The φ211 and φ21 (−1) are still not mixed by the 

electric field. 

 
      
      

   
  
  
  = E   

  
  
  

E = E0             

This is correct in both limits,      , and       . It is also correct when the two corrections are 

of the same order. 
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4.3 Variation method 

 The variational method is the key approximate method/technique typically used in 

quantum mechanics.  The variational principle is a scientific principle used within the calculus of 

variations, which develops general methods for finding functions which extremize the value of 

quantities that depend upon those functions. Any physical law which can be expressed as a 

variational principle describes a self-adjoint operator. These expressions are also called 

Hermitian. Such an expression describes an invariant under a Hermitian transformation. 

The variational principle states that if we simply guess the wave function, the expectation value 

of the Hamiltonian in that wave function will be greater than the true ground state energy. 

Basically the ‘trial wave function’ for the problem consists of some adjustable parameters 

called termed as the ‘variational parameters’. These parameters are adjusted until the energy of 

the trial wave function is minimized. The resulting trial wave function and its corresponding 

energy are variational method approximations to the exact wave function and energy. 

Suppose we are given a Hilbert space and a Hermitian operator over it called the Hamiltonian, H. 

Ignoring complications about continuous spectra, consider the discrete spectrum of H and the 

corresponding eigen spaces of each eigen value : 

                                                            =        

Where,      is the Kronecker delta, 

      =  0  if i      

= 0  if i  =j. 

And the Hamiltonian is related to » through the typical eigen value relation 

           =           

 Physical states are normalized, meaning that their norm is equal to 1. Once again ignoring 

complications involved with a continuous spectrum of H, suppose it is bounded from below and 

that its greatest lower bound is E0. Suppose also that we know the corresponding state |Èé’. The 

expectation value of H is then, 
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UNIT V: 

ANGULAR MOMENTUM 

 Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – 

Matrix representation – Spin angular momentum – Addition of angular momenta – CG 

Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-

functions and Pauli’s exclusion principle. 

 

5.1 Eigenvalue spectrum of general angular momentum 

 Let us first consider the angular momentum classically. For this, let us consider a particle 

of mass m moving along a path AB about some fixed point O as shown in the Figure . Let at 

some instant of time, the particle be at the position P. The position P of the particle with respect 

to the point O is defined by the position vector         or    . Let the linear momentum of the particle 

at the position P be   . The direction of   .  is along the tangent to the path AB at P. 

 

Figure 10 angular momentum 

Classically, the angular momentum (which is a vector quantity) of the particle about the 

point O when it is at P is defined as 

                                                               =                                                   ----------(1) 

With the point O as the origin, let us consider a rectangular coordinate system (XYZ). If x, 

y, z be the coordinates of the point P then 

                                        =   x +   y +   z                                              ----------(2) 

Further, if px, py and pz be respectively the components of along X, and Z axes then 
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                                      =    px +    py +    pz                                              ----------(3) 

If Lx, Ly and Lz be respectively the X, Y and Z components of , then using equations (7.80) 

and (2) in Equation (1), we get 

   Lx +    Ly +    Lz  =  
      

   
      

  

 Evaluating the right hand side of the above equation and comparing the coefficients of   , 

   and    on both sides we obtain 

     Lx = y    – z                             -------(4) 

                                                                 Ly = z    – x                                   --------------(5) 

    Lz = x    – y                                          ---------(6) 

 

Quantum Mechanical Description of Angular Momentum 

In order to treat angular momentum quantum mechanically, we replace the physical 

quantities Lx, Ly, Lz, x, y, z, px, py and pz by corresponding linear Hermitian operators, 

x       = x 

y       = y 

z       = z 

             =  - i  
 

  
 

             =  - i  
 

  
 

                                                                 =  - i  
 

  
                                        --------(7) 

 

Substituting the above in Equations (1), (4), (5) and (6) we obtain the quantum 

mechanical operators corresponding to the quantities    , Lx, Ly, Lz as 

     = -  i     x                                       ----------(8) 

       =  -  i  ( y
 

  
   

 

  
)                                          --------(9) 

       =  -  i  ( z
 

  
   

 

  
)                                          --------(9) 

       =  -  i  ( x
 

  
   

 

  
)                                          --------(9) 
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5.2 Ladder Operators 

Instead of      , and        it is often convenient and more instructive to use their complex 

combinations        i    

The operator                                   

                                                       =     + i                                         -----------(10) 

is called the step-up operator. 

The operator                  

                                                                  =     + i                                         -----------(11) 

is called the step-down operator. 

We find 

                                                =      (     + i   )    =            + i                             --------(12) 

Using the commutation relations Equation (12) becomes 

             =          + i      + i(               ) 

                                                =  (     + i   )      + (     + i   ) 

                                                        =           +      

Or 

                                    =            +1 )                                  ---------(13) 

Similarly, we obtain 

                                   =            +1 )                                  ---------(14) 

 

5.3 Algebra – Matrix representation 

 (i) Sum of two linear operators and , i.e., (    +    ) is defined according to 

                         (   +    ) |    =     |    +      |                 -------(1) 

 (ii) Product of two linear operators a1 and , i.e., (        ) is defined according to 

                                                           (        ) |    =     (    ) |                      --------(2) 

  From Equation (2) it is possible to define powers of a linear operator. We further 

find the following relations to hold 
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   (    +    ) |    = (    +    ) |                         ------(3) 

   [(    +    ) +    ] |     =  [    +      +     )]                  --------(4) 

   [   (   +    )] |       =         |       +         |                      -------(5) 

iii) Commutator of two linear operators     and      is written as [          ] and is defined as 

                             [          ] =         –                                 …..(6) 

The operator      and     are said to be non-commutative if 

                        ,     

                   i.e., [     ,     ]     0                               …(7) 

We may note that the above properties hold with matrices. 

It is seen that the algebra of N-dimensional square matrices is the same as the algebra of 

linear operators. 

We may further note that the algebra of quantum mechanics is a noncommutative 

algebra. 

Multiplication by a constant is linear operation. A constant operator commutes with all 

linear operators. 

(iv) Inverse of an Operator: If two linear operators     and     satisfy the equation 

                                                     =            =  (Identity operator)                           …(8) 

then       is said to be the inverse of      and vice-versa, provided the inverse exists and we write 

                     =     
-1

           ,        =     
-1

                        ----------(9) 

The inverse of a product of operators (      ,        ,      ) is 

                                                   (                   )
-1

 =     
-1

     
-1     

-1                                    
…(10) 

As mentioned earlier, the above properties of linear operators are common to finite 

square matrices. This fact allows us to represent operators by matrices. 

 

5.4 Spin angular momentum 

 To account for the multiplicity of atomic states, Uhlenbeck and Goudsmit proposed in 

1925 that an electron in an atom possesses an intrinsic angular momentum in addition to orbital 

angular momentum.  This intrinsic angular momentum S is called spin angular momentum 
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whose projection on the z-axis can have the values sz  = ms  , ms =   ½.  The maximum 

measurable component of spin angular momentum in units of   is called the spin of the particle 

and is usually denoted by s.  they also suggested that the spin angular momentum gives rise to an 

intrinsic magnetic moment    given by 

                            = - 
 

 
 s                                                  ------------(1) 

Assuming that all the stable and unstable particles to have spin angular momentum S, we expect 

its components Sx, Sy, and Sz to obey the general commutation relation and S
2
 and Sz to have the 

eigenvalues s(s+1)  2  and ms  ,  ms = -s, -s+1,……..2 respectively. 

 

5.5 Addition of angular momentum 

 Addition of angular momenta is very important in the study of atomic spectra, structure 

of nuclei, etc.  consider two non interacting  systems having angular momenta J1 and J2 and eigen 

kets  |         and |        respectively,\. 

                  
  |         =  j1 ( j1  + 1)   2  |                  -------(1) 

                J1z |         = m1   |                                      -------(2) 

And 

                   
  |         =  j2 ( j2  + 1)   2  |                  -------(3) 

                J2z |         = m2   |                                      -------(4) 

Where m1  = j1 , j1 -1,…, - j1                m2  = j2 , j2 -1,…, - j2 

Since the two systems are non interacting  

           [j1, j2]    =  0  and               [  
    

 ]      =  0                                      ----(5) 

And therefore the operators   
  , J1z ,   

  , J2z  form a complete set with simultaneous eigen kets  

  |               , which is a product of |        and |       .  For given values of j1 and j2 

           |              = |        |            = |                         -------(6) 

 Since    and    can respectively have (2j1 +1) and (2j2 +1) orientation, the subspace 

with define values of    and    will have (2j1 +1)  (2j2 +1) dimensions. 
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5.6 Clebsh – Gordan Coefficients 

  for the total angular momentum vector  

J = J1 + J2 

                                             J x J = i   J                                  ------------(7) 

Also it follows that 

                                                       [j
2
, jz] = 0,   [j

2
,   

 ] = [j
2
,   

 ]  =  0                           ------(8) 

The orthogonal eigenkets of j
2 

 and jz  be |j     .  the completeness of the known kets    |         

allows us to express the unknown kets | j     as a linear combination of |        . 

                         | j     =               |                       -----(9) 

The coefficient of this linear combination are called Clebsh-Gordan coefficient or wigner 

coefficient or vector coupling coefficients.  Multiplying equation(9) with the bra    
   |, we get 

                      |  =                       
 | j                            --------(10) 

The parameters J1 and  J2  are not explicitly in the coefficients as we are  working for definite 

values of j1 and j2.  In the strict sense the coefficients would be             |             

 The inverse of equation(10) is given by 

                  =                |                                --------(11) 

Where the summation over m is from -j to j is from |j1 – j2| to j1 + j2.   The unitary character of 

Clebsh - Gordan coefficients in expressed by the equations  

            
                 |     

    
   =      

 |     
    

   

                                                                                  =       
        

             ---------(12) 

And                                        
 |          =     |          

                                                                               =                        ---------(12) 

Where                                          =              
*
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5.7 Symmetric and Anti symmetric Wave functions 

 A wave function is symmetric if the interchange of any pair of particles among its 

arguments leaves it unchanged.  If the interchange of any pair of particles change the sign of  , it 

is said to be antisymmetric.  Any physically acceptable wave function representing two identical 

particles must be either symmetric or anti symmetric with respect to an interchange of the 

particles.  Generalizing, the principle of indistinguishability requires that the wave function must 

be either symmetric or anti symmetric with respect to the interchange of any pair of particles. 

 Let the wave function  (1,2,…,n,t) is symmetric at a particular time t.  H    is then 

symmetric since H is symmetric in its arguments.  The schrodinger equation states that. 

                            i   
 

  
   (1,2,…,n,t)  = H (1,2,…,n,t)   (1,2,…,n,t)                    --------(1) 

 since H   is symmetric, 
 

  
   is also symmetric.  Then the wave function at an 

infinitesimally latter time t + dt given by   + 
 

  
    is also symmetric.  This procedure can be 

continued to cover large time intervals.  In similar fashion, if   is antisymmetric at any time, it is 

always antisymmetric.  Thus, a wave function which is symmetric continues to be symmetric and 

a wave function which is anti symmetric continues to be anti symmetric.  In other words, the 

symmetry character of a wave function does not change with time. 

 

5.8 Pauli principle 

 Consider a system of non interacting indistinguishable particles.  The Hamiltonian of 

such a system can be written as 

                   H(1,2,…..,n)  =  H(1) + H(2) +……..H(n)               -------(1) 

 The approximate energy eigen function will be a simple product of one particle eigen 

functions.  If ua (1), ub (2), …… un(n),  are the n one-particle eigen functions, then 

                                  (1,2,…,n,)    =  ua (1), ub (2), …… un (n),                     --------(2) 

                         E  =  Ea   +   Eb   + Ec     ……… En                       -----(3) 

Where ua (1), ub (2), …… un (n) and Ea , Eb  , Ec   …..  En     satisfy the relation:       

H (1) ua (1) =  Ea ua (1), 
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                                        H (2) ub (2) =  Eb ub (2),                                 -------(4) 

Our assumption that state ua is occupied by particle 1, ub   by particle 2 and so on is not correct 

since the particles are indistinguishable. All that we can say is that one particle is in the state ua , 

a second is in ub   and so on.  Thus for a system consisting of two particles, the possible 

eigenfunctions are ua (1) ub (2) and ua (2) ub (2).  The symmetric and anti symmetric combinations 

are: 

                                                                         = ua(1) ub(2) + ua(2) ub(2).                -------(5) 

                              = ua(1) ub(2) - ua(2) ub(2).       

                                                                  =   
            
            

                                     -------(6) 

If both particles are put in the same state say     then 

                                  = ua(1) ua(2) + ua(1) ua(2) 

                      = 2    ua(1) ua(2)                                                 --------(7) 

                                                   = ua(1) ua(2) - ua(2) ua(2).       =  0                           ----------(8) 

 The symmetry or anti symmetry of a state function is an important law of nature and 

experiments have shown that the particular state of symmetry of a system is related to the spin of 

the identical particles.  Pauli demonstrated that: 

(i) Systems of identical particles with half-off-integer spins(spin ½, 3/2,….) are 

described by anti symmetric wave functions.  Such particles obey Fermi-Dirac 

statistics and are called fermions. 

(ii) Systems of identical particles with inter spins(spin 0,1,2,…) are described by 

symmetric wave function.  Such particles obey Bose-einstein statistics and are called 

bosons. 

Equation(8) show that the antisymmetric wave function vanishes when two identical particles 

have the same set of coordinates.  In other words, two identical fermions cannot occupy the 

same state.  This is one form of  Pauli’s exclusion principle.  As the spin of electron is 1/2 , 
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the pauli principle is commonly defined as” no two electrons can have the same set of 

quantum numbers”. 

 Generalizing for an n-particle system, the normalized anti symmetric combination can be 

written as 

    (1,2,….n)  = 
 

   
   
             
   

             
  

 The factor 
 

   
 Is the normalization constant and the determinant is called slater 

determinant. 




